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The object of this paper is to prove the following theorem: Let Y be a closed
subspace of the Banach space X, (S, 1', /L) a IT-finite measure space, L(S, Y)
(respectively, L(S, Xl) the space of all strongly measurable functions from S to Y
(respectively, X), and p a positive number. Then L(S, Yl is pointwise proximinal
in L(S, X) if and only if LP(/L, Y) is proximinal in LP(/L, Xl, As an application of
the theorem stated above, we prove that if Y is a separable closed subspace of the
Banach space X, p is a positive number, then LP(/L, Yl is proximinal in LP(/L, Xl
if and only if Y is proximinal in X. Finally, several other interesting results on
pointwise best approximation are also obtained. r,;, 1'194 Academic Press, Inc.

1. INTRODUCTION

Recently, best approximation in LP(j.L, X) was discussed deeply by
Khalil and Deeb in [1]. The central purpose of the present paper is to
study further the topics stated above starting from a new angle. Precisely,
we establish an equivalent relation between the proximinality of L P(j.L, Y)
in LP(j.L, X) and the pointwise proximinality of L(S, Y) in L(S, X).

It should be pointed out that the results obtained in the present paper
sharpen and improve those in [1,2], and our methods are not only distinct
from those in [1] but also seem to be more unified and simpler than those
in [1].

In Section 2, we introduce some basic concepts and known results for
the reader's convenience. In section 3, we give and prove our main results.
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Throughout the whole paper, we always suppose (X," . II) is a Banach
space over the number field K, Y is a closed subspace of X, K is the field
R of real numbers or the field C of complex numbers, (S, !, J-L) is a given
a-finite measure space, US, K) is the ring of all K-valued measurable
functions defined on(S, !, J-L) under pointwise addition and multiplication,
in which functions equal a.e. are identified. For A en, we write fA for
the indicator function of A, A' for the complement of A, i.e., A' = n \A.
Finally, N stands for the set of all natural numbers.

2. PRELIMINARIES

DEFINITION 2.1 [6]. Let (M, d) be a metric space, 2 M the collection of
all nonempty subsets of M. A multifunction F: S ~ 2 M is called com­
pactly measurable if F-I(B) = {s E SIF(s) n B "* 0} E! for any com­
pact subset B of M.

LEMMA 2.1 [6, Th. I', p. 230]. Let (M, d) be a separable metric space.
Then a multifunction F: S ~ 2M having complete values, namely, that F(s)
is a complete subset of M for each s E S, is compactly measurable ifand only
if there exists a countable set {VnIn E N} of M-valued Borel measurable
functions defined on (S,!, J-L) such that F(s) = {v,,( s)ln EN} {the closure
of the set {Vn(s)ln EN}) for each s E S.

DEFINITION 2.2 [3,4,7,8]. Let (M, d) be a metric space. A Borel
measurable function from S to M is called strongly measurable if it is the
pointwise limit of a sequence of simple Borel measurable functions from S
to M. It is clear that the notation of "strongly measurable" coincides with
that of "Borel measurable" if M is separable.

Denote by US, X) the space of all strongly measurable functions from
(S, !, J1.) to (X, II . ID. We say that a subset M of US, X) is closed if it is
closed with respect to pointwise limits of sequences. Functions equal a.e.
are identified. Let Me US, X) be a closed US, K)-submodule (for
example, US, Y», for some r> 0, we write C(M) for the Banach space
(when r ~ 1) with the norm II· II, (the Frechet space (when 0 < r < 1)
with the quasinorm II· fir) of all functions p in M satisfying j~llp(s)II' dJ-L
< +x, it is clear that C(M) = L'(J-L, Y) when M = US, Y).

Remark 2.1. When X is not separable, examples show that the set of
all Borel measurable functions from S to X does not form a linear space
(see [9]).

DEFINITION 2.3. Let f E US, X), DeUS, X). fo ED is called a
pointwise best approximant of f in D if for all g E D, we have IIf(s) ­
fo(s)11 $ Ilf(s) - g(s)11 a.e. "Pointwise proximinal" is defined accordingly.
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Throughout the rest of the paper, such concepts as "Proximinal" and
"Best approximation" for (L'(M), II· II,) are the same as those in [1].

LEMMA 2.2. Let M be a closed subspace of US, X). If M is pointwise
proximinal in US, X), then M must be an L(S, K)-submodule.

Proof The set of all simple measurable functions in US, K) is dense
in US, K), and M is a closed linear subspace of US, X). Thus to prove
M is an US, K)-submodule, we only need to prove IA • P EM for any
A E!, P EM.

Suppose otherwise, then there exist A E! and p E M such pA =

lA . p EM. Since M is pointwise proximinal in US, X), there is p~ EM
which is a pointwise best approximant of PA in M. Since 0 EM, we have
IlpA(s) - p~(s)11 .:S Ilpis) - O(s)11 = lis) . IIp(s)11 a.e. This implies IA,(s) .
Ilpis) - p~(s)1I = 0 a.e. However, p EM implies IIPA(s) - pis)11 .:S

IlpA(S) - p(s)11 = IA,(s) . IIp(s)11 a.e., and hence lA(s) . IlpA(S) - p~(s)1I = 0
a.e. Consequently Ilpis) - p~(s)1I = 0 a.e. This implies PA = p~ EM.
The contradiction ends the proof of Lemma 2.2.

LEMMA 2.3. Let M be a closed US, K)-submodule of US, X), r> 0,
and p E L'(p., X). IfPo E L'(M) is a best approximant ofpin L'(M), then
Po is also a pointwise best approximant of p in M.

Proof Since L'(M) is sequentially dense in M under pointwise con­
vergence, to prove our desired result, we only need to prove II p( s) ­
Po(s)11 .:S IIp(s) - q(s)1I a.e. for any q E L'(M).

Suppose otherwise, i.e., there exists some qo E L'(M) such that p.{s E S I
IIp(s) - Po(s)11 > IIp(s) - qO<s)ll} > O. Let A = {s E SI IIp(s) - Po(s)11 >
IIp(s) - qo(s)ll} and p~ = IA . qo + lA' . Po· From the fact that M is an
US, K)-submodule, we see that p~ E M. It is clear that p;) E L'(M) and
lip - p;)II, < lip - Poll" this contradiction with the hypothesis on Po ends
the proof of Lemma 2.3.

3. MAIN RESULTS

THEOREM 3.1. Let M be a closed US, K)-submodule ofUS, X), r > O.
Then the following are equivalent:

(1) M is pointwise proximinal in L(S, X);

(2) (L'(M), II· II,) is proximinal in (L'(p., X), II· II,).

Proof The implication (1) = (2) is clear, we prove (2) = (1) as fol­
lows.
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Since (S,l:,p,) is a-finite, we can suppose S = UnENAn,An E.! and
An cAn+ 1 such that p,(A) < +00 for each n EN.

For any given p E US, X), put Bn = {s E S/ I/p(s)I/ ~ n}. Then we
have p,(S \ Un E NBn) = O. Set C" = An n B", it is clear that p,(S \

U"ENCn)=O.
Put D" = c" \ C"-l and p" = 10 . p. Then p" E U(p" X), and hence

there exists p~ E Lr(M) such th~t lip" - p~llr = infqEL'(M)llp" - ql/r'
From Lemma 2.3 we have the following:

IIPn(s) - p~(s)1I ~llp,,(s) - q(s)11 a.e. for any q EM. (3.1.1 )

Taking q = 0 yields I/p~(s)11 s 21/Pn(s)11 = 2/D (s) . IIp(s)11 a.e., and thus
[D'(S) . Ilp~(s)11 = 0 a.e. n 0.1.2)

Particularly, 0.1.2) implies p~ = 10 . p~ for each n E N. 0.1.3)
By setting p~ = EZ ~ I p~ for e~ch n E N, we get p~+k - p~ =

E;:':'k" +1 P;" for any nand k in N, and thus we have the following:

,,+k

Ilp~+k(S) -p~(s)11 S L II p;"(s) II a.e.
rn=,,+l

(3.1.4)

Since p,(S \ U" END,,) = 0 and II p~+/s) - p~(s)11 s r:;:,:,k,,+ 1

IIp;''(s)11 = 2(E;:'+~~+ JD (s»llp(s)11 a.e. (note 0.1.2) and 0.1.4», and
hence Ic(s) 'lIp~+k(S5'- p~(s)1I = 0 a.e. This implies lim,,~,Jp~+k(s)
-p~(s)11 ,;:, 0 a.e. uniformly for all k EO N; that is, {p~ln EN} is a Cauchy
sequence.

Since M is closed, and hence also complete, there is Po EO M such that
{p~} converges to Po. We can write Po = Ek=IP~. From 0.1.3) we have
Po = Ek=IIok . p~. Now we assert

" p( s) - Po( s)" s" p( s) - q( s)" a.e. for any q EM. (3.1.5)

If (3.1.5) is false, then there exists some qo EM such that p,{s E SI
IIp(s) - Po(s)11 > !!p(s) - qo(s)11J > O. Let A o = (s EO SllIp(s) - Po(s)1I >
IIp(s) - qis)II}. Since j.L(S\ U~=lDn) = 0, there is at least some k(J EO N
such that p,(A o n D k ) > O. From the fact that Ilpk (s) - p2(s)11 =

I D (s) . IIp(s) - pis)11 ~.e. and Ilpk (s) - q2 (s)11 = 10 (s) ~ IIp(s) ...!.' qo(s)11
ko 0 _ _ 0 0 () kO

a.e., where Pk = IDk • Po and qk = 10 . qo, we have (s EO S[[[Pk (s) -
o 0 "k" 0

p2(s)lI> IIPkJs) - q2(s)1I} ::>A o n D k a.e., so p,{s EO SllIpk(s) - Pk(J(s)1I
o 0.0.. 0 () 0 ()

> IIPk (s) - qkJS)1I} ~ p,(A o n D k ) > O. (3.1.6)
Sinc'~ Pko EM, q2 E M, 0.1.6)'~ontradicts(3.1.1). So Po is a pointwise

o 0

best approximant of P in M.
This completes the proof of Theorem 3.1.
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THEOREM 3.2. Let p > O. Then the following are equivalent:

(1) L(S, Y) is pointwise proximinal in L(S, X);

(2) LP(j.t, Y) is proximinal in LP(j.t, X).

Proof In Theorem 3.1, we take M = L(S, Y), then the proof of
Theorem 3.2 immediately follows from Theorem 3.1.

COROLLARy 3.1. Let p > 1. Then the following are equivalent:

(1) LP(j.t, Y) is proximinal in LP(j.t, X);

(2) L'(j.t, Y) is proximinal in L'(j.t, X).

Proof Both (1) and (2) are equivalent with the fact LCS, Y) is point­
wise proximinal in L(S, X), and hence (1) and (2) are equivalent.

This completes the proof of Corollary 3.1.

Remark 3.1. When (S, 1:, j.t) is a finite measure space, Corollary 3.1 is
just Thm. 1.1 of [1].

THEOREM 3.3. If L1(j.t, Y) is proximinal in O(j.t, X), then Y must be
proximinal in X.

Proof We take {A n}~ ~ I to be the same as Theorem 3.1, then there
must be k o E N such that 0 < j.t(A k < +00.

u
Let x be any fixed point of X. Define p: S ~ X by pes) = IA (s)' x

·0
for each s E S, then clearly p E O(p., X), and hence there is at least
some Po E LI(j.t, Y) such that lip - Polll = infqE /1(/-,. nllp - qili. So
lip - Polll :$ lip - 14 . YIII = j.t(A k )llx - yll for any y E Y, i.e.,

• klJ ()

Put X o = !sPo(s)du(s), then

'I
x - (~ ) xoll:$ (~ ) flip - Poll du :$llx - yll

j.t k o j.t k" S

for any y E Y. From (1/(j.t(A k .))xo E Y, we see that

fi
x - (1 )xOII = inf Ilx -yll,

j.t A ko }"EY

that is, (1/(j.t(A ko )))xo is a best approximant of x in Y.
This completes the proof of Theorem 3.3.
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THEOREM 3.4. Let Y be a separable and proximinal subspace of X. Then
L(S, Y) is pointwise proximinal in US, X).

Proof Let p E US, X). Now we define a multifunction F:
(S,!,j.d ~ 2Y as follows: F(s) = {y E YI I/p(s) - yll = inf/EYI/p(s)­
y'll} for each s E S. Then F(s) is nonempty and closed, and hence also
complete. Now we prove P is compactly measurable:

Let Bbe any compact subset of Y. Then we see the following relations:

P-1(B) = (s E SIP(s) n B *' 0}

= U {s E SllIp(s) - yll = inf IIp(s) - y'11}
yeS ~eY

nU {s E Slllp(s) - Yill $ jnf IIp(s) - y/ll + ~},
j=lieN yeY}

where {Yi!i EN} is any selected countable subset of B which is dense
in B.

Since the function f: X ~ [0, +00] defined by f(x) = infyeyl/x - yll is
continuous and p: S ~ X is a strongly measurable function, f( p( . »:
S ~ R+ is a real-valued measurable function defined on S, and hence
P- 1(B) E !; namely, P is compactly measurable.

From Lemma 2.1, we see that there exists a sequence {Vn } in US, Y)
such that F(s) = {v,.( s )In E N} for each s E S.

According to the definition of P, it is easily seen that each v" is a
pointwise best approximant of p in US, Y).

This completes the proof of Theorem 3.4.

THEOREM 3.5. Let Y be separable, p > O. Then LP(p." Y) is proximinal
in LP(p." X) if and only if Y is prqximinal in X.

Proof The proof follows immediately from Theorem 3.2, Theorem 3.3,
and Theorem 3.4.

Remark 3.2. Theorem 3.5 removes an extra condition in Thm. 1.3 of
[1], namely, that Y should be also a dual space.

THEOREM 3.6. Let Y be reflexive. Then L(S, y) is pointwise proximinal
in US, X).

Proof Since L2(p." Y) is reflexive, it is proximinal in L 2(p." X), and
hence L(S, Y) is also pointwise proximinal in US, X) from Theorem 3.2.

This completes the proof of Theorem 3.6.

THEOREM 3.7. X is reflexive if and only if any closed US, K)-submodule
of US, X) is pointwise proximinal in US, X).
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Proof Necessity. Let M be a closed US, K)-submodule of US, X).
Then L 2(M) is a closed subspace of L 2(p" X). Since X is reflexive, so is
L2(p" X) (see [5]), and hence L2(M) is proximinal in L2(/L, X). M is
pointwise proximinal in L(S, X) from Theorem 3.1.

Sufficiency. Let Y be a closed subspace of X. Then US, Y) is a
closed US, K)-submodule of US, X), and hence US, Y) is pointwise
proximinal in US, X), so Y is also proximinal in X from Theorem 3.3. It
is well known that X is reflexive iff any closed subspace of X is proximinal
in X from [5], and thus X is a reflexive Banach space.

This completes the proof of Theorem 3.7.

THEOREM 3.8. Let X be a Hilbert space, Me US, X) a closed sub­
space. Then M is pointwise proximinal in US, X) iff M is an US, K)­
submodule.

Proof The proof of Theorem 3.8 follows from Lemma 2.2 and Theo­
rem 3.7.
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